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BACKGROUND

METHODS

RESULTS

DISCUSSION
Part 1: Prospective cohort study
• Evaluate how often CHARTwatch prevents patient 

deterioration (effective intervention rate) through real-
time surveys and chart review for 100 consecutive alerts 

• Quantify the overall outcome frequency and model recall

Part 2: Model retraining evaluations
• Evaluate the change in model performance due to 

contamination bias when retraining with a range of 
effective intervention rates , recall frequencies, and ML 
model types, with values informed by the prospective 
cohort study

• Contamination bias mitigation: Evaluate the effect of 
removing potentially confounded outcomes prior to 
retraining on the magnitude of contamination bias and 
overall model performance

Clinician agreement with CHARTwatch predictions is 
associated with downstream clinical actions.

We present a framework for using clinician 
perception/actions and model parameters to estimate 
contamination bias.

For CHARTwatch, contamination bias at any retraining 
interval is limited (△AUC <2%) but the impact over time 
is summative.

Removing potentially confounded outcomes may help 
mitigate contamination bias during retraining.
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CHARTWatch is an AI model that was implemented at St. 
Michael’s Hospital in October 2020 and predicts inpatient 
deterioration on medical wards.1

AI Models may degrade over time due to factors like data drift 
and may require retraining. However, retraining a deployed 
model using post-deployment data may worsen performance 
due to contamination bias—a phenomenon where the model 
changes outcomes it later uses to retrain, as shown in recent 
simulation studies.2-5 

To inform whether to retrain CHARTwatch, we sought to 
quantify the degree of contamination bias and explore 
strategies to mitigate it. 
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Legend: The effect of varying model parameters on contamination bias and model performance over time. Shaded area corresponds to 95% confidence interval. 
For effective intervention rate, the 3 vertical panels correspond to different probabilities of the patient surviving due to a CHARTwatch alert (10%, 30% and 50%) 
with a fixed recall of 70%. The top left plot (blue square, 0.1 EIR) is most representative of observed CHARTWatch performance. For model recall, the 3 vertical 

panels correspond to different model recall rates (25%, 50% and 75%), with a fixed 35% effective intervention rate.
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Legend: The effect of removing potentially contaminated outcomes before retraining on model performance over time. Shaded area corresponds to 95% 
confidence interval. In the top panel, all patient outcomes were retained in model retraining. In the bottom panel, for the deployed model, all patients 

who had a CHARTwatch alert but did not experience an outcome were removed from retraining as they were potentially contaminated. The three vertical 
panels correspond to model effective intervention rates of 10%, 30% and 50%. 
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