Predictors of Total Hip Arthroplasty After Surgically Managed Acetabulum Fractures: A Prognostic Factor Systematic Review and Meta-Analysis

Leadership. Innovation. Impact.

Geoffrey W Schemitsch MD^{1,2}, Darius Lamiere MD¹, Graeme Hoit MD^{1,2}, Manav Vyas MBBS PhD², Amir Khoshbin MD MSc FRCSC¹, Rob Fowler MD MSc^{2,3}, Aaron Nauth MD MSc FRCSC¹, Neill K J Adhikari MD MSc^{2,3}

¹Division of Orthopaedic Surgery, University of Toronto, Toronto, ON;²Institute of Health Policy, Management and Evaluation; ⁵Department of Critical Care Medicine, Sunnybrook Health Sciences Centre and University of Toronto

Introduction

Operative management of acetabular fractures can be complicated by the development of symptomatic post-traumatic arthritis which may necessitate conversion total hip arthroplasty (THA).¹ There is increased interest in treatment with THA for acute management, but optimal patient selection depends on identifying those at risk of later symptomatic post-traumatic arthritis requiring conversion THA. Our study aimed to systematically review prognostic factors for symptomatic post-operative arthritis requiring conversion THA, including patient and fracture characteristics.

Methods

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The protocol was registered on PROSPERO. Deviations were declared.

We reported associations between potential prognostic factors and THA. Embase and MEDLINE databases were systematically searched, using the Ovid interface, from inception to September 27, 2024. Title and abstract screening, full-text screening, and data extraction was completed independently and in duplicate by two reviewers using predefined criteria. Study quality and risk of bias was assessed by two reviewers in duplicate using the Quality in Prognostics Studies tool. Conflicts were resolved by discussion and consensus.

Univariable and multivariable effect sizes were pooled separately. In univariable analysis of binary outcomes, study-specific exposure and outcome data for each prognostic factor were used to calculate odds ratios with 95% confidence intervals (CI). In the case of zero cell frequencies, a continuity correction of 0.5 was applied. For continuous prognostic factors, study sample size, mean, and standard deviation were used to calculate mean differences between patients with conversion THA and those with native joint survival. Medians and interquartile ranges (IQR) were converted to means and standard deviations (SD) respectively, assuming a normal distribution.² Multivariable odds ratios and/or hazard ratios were pooled separately when sufficient studies were encountered. Subgroups analyses were conducted comparing studies restricting inclusion to patients >60 years old against studies including patients of all ages.

Data was pooled using a random effects model using inverse of variance weights. T² was calculated using the restricted maximum likelihood method. Confidence intervals were calculated using the Hartung-Knapp adjustment or Wald estimator as appropriate.³ As a secondary outcome, the overall pooled proportion of patients who required conversion THA was calculated using a generalized linear mixed-effects model with study specific logit-transformed proportions.⁴ Confidence intervals for each study were calculated using the Clopper-Pearson method.^{5,6} Heterogeneity was assessed using the I² statistic, T², and prediction intervals. The certainty of evidence was interpreted using the GRADE framework.⁷

Prognostic		Pooled Crude	Heterogeneity (95%	
Factor	Sample	Estimates (95% CI)	CI)	Certainty of Evidence
Impaction	1798 fractures with	OR 2.08 (1.60 to	l ² : 0% (0 to 55)	Moderate due to
	322 THA in 14	2.70)	Pl: 1.55 to 2.76	serious risk of bias
	studies			
Dislocation	1932 fractures with	OR 2.20 (1.51 to	I ² : 10.2% (0 to 49.4)	Moderate due to
	324 THA in 12	3.19)	PI: 0.93 to 5.16	serious risk of bias
	studies			
Non-Anatomic	652 fractures with	OR 2.36 (1.58 to	I ² : 47.9% (0 to 76.8)	Moderate due to
Reduction	150 THA in 8	3.51)	PI: 1.46 to 3.81	serious risk of bias
(X-ray)	studies			
Non-Anatomic	711 fractures with	OR 3 46 (1 25 to	12·11 8% (0 to 81 7)	Moderate due to
Reduction (CT)	115 THA in 5	9 57)	Pl: 0 75 to 16 1	serious risk of hias
	studies	5.577	11.0.7510 10.1	
Sex (Female)	2276 fractures with	OR 1.48(1.15 to	l ² : 5.2% (0 to 56)	Moderate due to
	399 THA in 15	1.88)	PI: 1.13 to 1.93	serious risk of bias
	studies		1120 to 1000	
Age	2050 fractures with	MD 8.90 (7.27 to	l ² : 0% (0 to 56.6)	Moderate due to
	376 THA in 13	10.53)	PI: 7.06 to 10.74	serious risk of bias
	studies	,		
Posterior Wall	966 fractures with	OR 2.39 (0.97 to	I ² : 44% (0 to 79.4)	Low due to serious risk
Comminution	177 THA in 5	5.91)	PI: 0.53 to 10.84	of bias and serious
	studies	,		imprecision
Fracture Type	2681 fractures, 465	OR 1.76 (1.29 to	I ² : 23% (0 to 55.5)	Low due to serious risk
(Associated)	THA in 20 studies	2.41)	Pl: 0.80 to 3.88	of bias and
		,		inconsistency
Prognostic		Pooled Adjusted	Heterogeneity (95%	
Factor	Sample	Estimates (95% CI)	CI)	Certainty of Evidence
Age (per 1 year	1313 fractures with	aOR 1.04 (1.02 to	l ² : 82.4% (64.9 to	High
increase)	249 THA in 7	1.06)	91.2)	
	studies		PI: 0.98 to 1.10	
Age (per 1 year	2262 fractures with	aHR 1.04 (1.03 to	I ² : 27% (0 to 72.6)	High
increase)	335 THA in 4	1.05)	Pl: 1.01 to 1.07	
	studies			
Posterior Wall	769 fractures with	aOR 2.05 (0.78 to	I ² :0%	Moderate due to
Comminution	132 THA in 2	5.41)	Pl: 0.78 to 5.41	serious imprecision
	studies			
Impaction	1346 fractures with	aHR 2.08 (0.86 to	I ² : 63% (0 to 87.6)	Moderate due to
	226 THA in 4	5.02)	Pl: 0.39 to 11.15	serious imprecision
	studies			
Sex (Female)	2133 fractures,	aHR 1.31 (0.44 to	I ² : 56% (0 to 83.7)	Low due to serious
	with 337 THA in 5	3.89)	Pl: 0.26 to 6,56	imprecision and
	studies			inconsistency
Dislocation	936 fractures with	aOR 1.80 (0.28 to	I ² : 61.9% (0 to 87.2)	Very low due to very
	161 THA in 4	11.81)	PI: 0.07 to 49.20	serious imprecision
	studies			and serious

Results

Our search identified 3054 citations of which 38 studies ultimately met our eligibility criteria. The median (IQR) of participant mean age across all studies was 48.5 years (41.8 to 64.9). The median (IQR) proportion of females was 27.5% (21.7 to 32.6). There was a total of 6931 a cetabulum fractures with 1122 fractures requiring conversion THA. Overall risk of bias was low in 4 studies, moderate in 22 studies, and high in 12 studies.

There was no credible subgroup effect related to study population age for any of the included prognostic factors. Removing high risk of bias studies did not impact any of the pooled estimates

Publication bias was not detected for any prognostic factor.

The weighted proportion of patients requiring THA conversion was 17.6% (95% Cl 15.2 to 20.4%, low certainty due to serious risk of bias and serious inconsistency). The median (IQR) of reported mean time to conversion (22 studies) was 26.6 months (15.5 to 36).

Discussion

Our study demonstrated a significant association between increasing age and odds of conversion THA in adult patients with operatively managed acetabulum fractures based on high certainty evidence from multivariable analyses. There was a lack of reproducibility of the influence of the remaining prognostic factors when comparing univariable and multivariable analyses.

Further research incorporating multivariable models to adjust for a consistent set of confounding factors is needed to further understand the prognostic effect of injury and patient level factors in this patient population. This future research will help to identify patients who are potentially at high risk of treatment failure with ORIF who may benefit from acute THA.

References

inconsistency

- 1. Ranawat A, Zelken J, Helfet D, Buly R. Total Hip Arthroplasty for Posttraumatic Arthritis after Acetabular Fracture. Journal of Arthroplasty. 2009 August;24(5):759-67.
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology. 2014;14:1-13.
- Veroniki AA, Jackson D, Viechtbauer W, Bender R, Bowden J, Knapp G, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Research synthesis methods. 2016;7(1):55-79.
- Lin L, Chu H. Meta-analysis of proportions using generalized linear mixed models. Epidemiology. 2020;31(5):713
- Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26(4):404-13.
- Schwarzer G, Rücker G. Meta-analysis of proportions. Meta-research: methods and protocols: Springer; 2021. p. 159-169.
- Foroutan F, Guyatt G, Zuk V, Vandvik PO, Alba AC, Mustafa R, et al. GRADE Guidelines 28: Use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. Journal of clinical epidemiology. 2020;121:62-70.