Quantitative Analysis of Instrument Motion Paths in Cataract Surgery Throughout a Resident's Training

David Mikhail, MD(C), MSc(C)¹, Shuting Xie, MSc², Michael Balas, MD³, Jason M. Kwok, MD, FEBO^{4,5}, Amrit Rai, MD, FRCSC^{3,6}, Amandeep Rai, MD, FRCSC^{3,6}, Peter J. Kertes, MD, CM, FRCSC^{3,7}, Iqbal Ike K. Ahmed, MD, FRCSC^{3,6}, Matthew B. Schlenker, MD, MSc, FRCSC^{3,6}

¹Temerty Faculty of Medicine, University of Toronto, To Private Hospital of La Baie, Avranches, France; ⁵Department of Ophthalmology, Central University Hospital of Caen, Caen, France; ⁶Prism Eye Institute, Mississauga, Ontario, Canada; ⁷John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.

INTRODUCTION

- Surgical training ideally utilizes **objective** and **quantifiable** evaluation tools over subjective training methods
- Experienced surgeons develop faster, more precise, efficient movements over time
- Motion tracking metrics of surgical instruments can quantify these improvements in surgical skill level to develop objective assessment tools

OBJECTIVE

Track the motion paths of surgical instruments during cataract surgeries performed by a resident ophthalmologist to quantify their learning curve throughout training

METHODS

1. Dataset Preparation

100 cataract surgery recordings by 1 resident during 1st year of training (cases 6-760)

2. Motion Tracking

Frame-by-frame, semiautomatic tracking of **11** surgical instruments, capturing 6 motion path parameters

3. Quantitative Analyses

Assessed improvement trends (Mann-Kendall), rates of skill progression (Theil-Sen slope), and **change**points (Pettitt's method) Instrument Classification: (1) Incision and Entry, **(2)** Manipulation and Tissue Handling, **(3)** Aspiration and Irrigation, (4) Phaco-emulsification, (5) Lens Implantation

Software: CVAT and TrackerMIL

Motion Path Parameters:

- **(1)** Path Length: Total distance travelled
- (2) Velocity: Speed of movement
- (3) Angular Change: Directional adjustments
- [4] Acceleration: Changes to speed
- **(5)** Jerk: Smoothness of acceleration
- **(6)** Workspace Coverage: Area covered by instrument motion

Change-points: Moments of significant skill improvement

Summary of the Results

- All 11 instruments exhibited statistically significant trends in at least one motion path parameter
- 2. Cannula (-11.8%), phaco handpiece (-11.5%), and cystotome (-8.9%) had largest path length reductions; cystotome (-1.7°) and IOL inserter (-1.68°) had largest reductions in **angular changes**
- 3. Median change-point for total path length across all instruments occurred at case 300
- 4. Change-points for angular change differed from path length, with some earlier milestones (e.g., keratome) and delayed shifts (e.g., forceps)
- 0.70, p < 0.001) and workspace coverage ($\rho = -0.54$, p < 0.001)

DISCUSSION

- Path length reductions reflect efficiency gains: IA tools showed greater, earlier reductions than lens
- different motion path metrics reveal different instrument- & task-specific learning curves

- In future, AI models can be trained to enable automated skills assessment and personalized feedback

Cel : Har stoto anni hopp	Sponge ndpiece ome Weck- ula Side oer Ko	Cel Sponge port Knife ratome Li Sideport IOL Inst	ens Injecto Knife Lens I For	• •	Total Pati	h Length Angular (Change
r	May	Jun	Jul	Aug	Sep	Oct	Nov
56	57-63	64-75	76-82	83-86	87-93	94-99	100
942	347-353	356-384	416-472	544-559	582-646	658-724	760

Phaco handpiece had strongest correlation between reduction in path length and case number ($\rho = -$

implantation tools ightarrow spatial navigation skills precede techniques requiring more refined motor control Angular change reductions (e.g., cystotome & IOL inserter) vs. minimal changes (e.g., forceps & lens injector) suggest angular change is more relevant for tasks requiring dynamic repositioning than static precision oTools for repetitive tasks (e.g., phacoemulsification) correlated more with case number than tools for varied or complex tasks (e.g., cannula or lens injector) -> repetition drives consistent skill improvement This represents one of the most **comprehensive** motion tracking datasets in ophthalmology and surgery

Case Number

Case Number

Sunnybrook